Using trajectories for collaborative filtering-based POI recommendation

نویسندگان

  • Haosheng Huang
  • Georg Gartner
چکیده

Current mobile guides often suffer from the following problems: a long knowledge acquisition process of recommending relevant Points of Interest (POIs), the lack of social navigation support, and the challenge of making implicit user-generated content (e.g., trajectories) useful. Collaborative filtering (CF) is a promising solution for these problems. This article employs CF to mine GPS trajectories for providing Amazon-like POI recommendations. Three CF methods are designed: simple_CF, freq_CF (considering visit frequencies of POIs), and freq_seq_CF (considering both user’s preferences and spatio-temporal behaviour). With these, services like “after visiting ..., people similar to you often went to ...” can be provided. The methods are evaluated with two GPS datasets. The results show that the CF methods can provide more accurate predictions than simple location-based methods. Also considering visit frequencies (popularity) of POIs and spatio-temporal motion behaviour (mainly the ways in which POIs are visited) in CF can improve the predictive performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

Personalized POI Travel Recommendation from Social Media

Travel based recommendation and journey planning are challenging tasks because of various interest preferences and trip restrictions such as limitation of time, source and destination points for each tourist. Large amount of data can be collected from the Internet and travel guides, but these resources normally recommend individual Point of Interest (POI) that is considered to be familiar, but ...

متن کامل

Using Context-Aware Collaborative Filtering for POI Recommendations in Mobile Guides

Mobile guide is one of the most popular Location Based Services. Currently, providing context-aware services/information is still very challenging in mobile guides. Collaborative fi ltering (CF), known as “Amazon-like recommendations”, is a promising solution for providing context-aware recommendations. The paper investigates how context-aware CF (CaCF) can be introduced into mobile guides. Spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDMMM

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014